Level B Foundation Investigation in Gilbert, AZ 2.2022
Challenge
Home Detail: 2000 single-family, two-story home on a conventional slab. Concrete stem wall with rebar & the top of the footing 14” below grade.
Homeowner’s Concerns/Goals: The homeowner is concerned with the signs of stress throughout the home. The homeowner would like to address any foundation issues and move back in since the home was a rental property.
Introduction: Thank you for allowing Arizona Foundation Solutions to present this foundation survey and assessment for the proposed foundation repairs on your property.
Purpose of the Investigation: The purpose of this report is to evaluate the foundation and the foundation conditions of this property, and to perform a manometer and foundation survey on the interior of the property.
Limitations: The purpose of this report is limited to documenting and addressing the areas of concern indicated by the customer related to potential foundation movements. Arizona Foundation Solutions uses a variety of tools such as manometer survey, observations by technicians with notes and photographs, and industry standards such as the Foundation Performance Association (FPA) “Guidelines for the Evaluation of Foundation Movement for Residential and Other Low-Rise Buildings” to determine if foundation movement has impacted the serviceability of the home. The term serviceability relates to items such as pinched doors and windows, cracks in drywall and slabs, cracks in exterior stucco and walls, and the like. Recommendations in this report are made to address and limit future issues related to serviceability and the customer’s concern.
The extent and scope of this manometer and foundation survey and assessment are detailed as follows:
• Perform a manometer survey.
• Locate areas of potential foundation and floor movement, if any.
• Visually inspect and record the interior and the exterior of the location.
• Evaluate any noted movement using industry consensus methods, if any.
• Prepare a documented repair plan if needed.
Foundation Footprint: A drawing of the footprint of the first floor was created and is included in this report.
Exterior Inspection: The exterior of the location was visually inspected. Items such as foundation cracks, exterior wall cracks, improper grading, type of structure, poor drainage, gutters or no gutters, bowed retaining walls, large trees close to the foundation, and any type of obstructions that may or may not influence the repair process were noted and recorded.
Interior Inspection: The interior of the location was visually inspected. Items such as floor cracks, wall cracks, ceiling cracks, sloping floors, uneven countertops, doors and windows that are out of alignment, cracked window glass, and bowed walls were noted and recorded.
Manometer Survey: The manometer survey, also known as a floor survey, is a measurement of the differences in interior floor elevations. The flatness of the interior floor was measured using a highly accurate survey device known as a Manometer. The entire interior floor area was surveyed and the elevations were recorded. These data points were then entered into a computer program that provides a topographical map showing the high and low elevation contours of the floor surface. This topographical map shows where the foundation is no longer level and shows where support and stabilization are needed. The floor survey also demonstrates whether any floor slab heave or settlement exists.
A heave pattern is observed in the western portion of the home as indicated by the higher elevation readings on the Topographical 3D Map. This phenomenon usually occurs in areas where structures are built on expansive clays. Moisture from one or any combination of the following: storm runoff, poor drainage around the foundation, plumbing leaks, and/or underground moisture sources will allow the moisture/vapor to accumulate underneath the foundation. The moisture then interacts with the clayey soils, causing them to swell. The clay soils take the path of least resistance and expand upwards and lift the foundation.
After examining the home and performing the manometer survey, Arizona Foundation Solutions believes the home could be experiencing minor foundation settlement in the central, northern and southeastern portions of the home as shown by the minor damage (aka Signs of Stress) and lower readings on the Topographical 2D Map. The drop-off in floor elevations on the topographical map is consistent with a foundation settlement pattern. Settlement can be caused by one or any combination of many factors including sub-grade saturation of moisture due to poor drainage, years of storm runoff, plumbing leaks, improper compaction, the lack of a proper foundation system, and/or (in most cases) natural earth movement.
There may be cracks in the floor slab. The flooring will need to be removed by others to verify the slab cracks. When the slab cracks all the way through, the separate sections can move independently of one another. This allows for severe damage to flooring and other signs of interior stress like pinched doors, drywall, and/or ceiling cracks.
The rebar in the stem wall along certain sides of the home has begun to rust. This has caused the rebar to deteriorate and the iron oxide to expand. The expansion from the iron oxide generates enough pressure to crack the stem wall. The corrosion of the bar has to typically exceed 20% before there is enough pressure to crack the stem wall. This issue should be dealt with properly to prevent the corrosion from spreading down the perimeter of the rebar and to return the original strength and span capacity to the stem wall.
The stem wall in certain areas around the home appears to be spalling. Spalling is when the concrete face of the stem wall is deteriorating. Spalling can occur when there is excess moisture near the foundation, minerals in the soil, and/or when the concrete was not mixed correctly. This is most often a cosmetic issue but if deterioration has occurred underneath loads of the structure, it is no longer considered cosmetic.
The Foundation Performance Association (FPA) “Guidelines for the Evaluation of Foundation Movement for Residential And Other Low-Rise Buildings” were adopted to correlate acceptable and unacceptable distress phenomena with actual survey elevations. Deflection and Tilt calculations were performed and compared to allowable values. For this engineered analysis, the deflection of the slab (L/567) was less than the allowable deflection limit of L/360. In addition, the tilt of the slab (0.18%) was less than the allowable tilt of 1.00%. While the tilt and deflection were less than the allowable limit, this is a general guide and the home is showing distress at areas indicating heave and areas indicating settlement.
Solution
Arizona Foundation Solutions believes that the proper way to deal with foundation heave is by lowering and managing the moisture content of expansive clays that cause heaving. It is our recommendation to manage the moisture underneath the foundation through active soil depressurization. This process will remove existing moisture from the soil as well as new moisture from the expansive clays and will help bring the moisture content down to an optimal level using both convection and evaporation. This will mitigate the future heaving of the clay soil and possibly allow existing heaving to subside. This process can take six months to several years to reach equilibrium. Minor movement may still occur, as the Moisture Level® System is intended to prevent significant and continual upward movement caused by moisture.
The Moisture Level® System is designed to control the moisture of expansive clays that cause heaving under the home. If optimal results are not achieved with the Moisture Level® System including additional measures described below, more aggressive measures may be required. The manometer and foundation survey will act as a baseline to measure performance over time.
A protection plan has been designed to stop the southwest portion of the home from any possible future settlement and further damages. AZFS can permanently stabilize this area at the Homeowner's discretion.
The Moisture Level® System is designed to control the moisture of expansive clays that cause heaving under the home. If optimal results are not achieved with the Moisture Level® System including additional measures described below, more aggressive measures may be required. The manometer and foundation survey will act as a baseline to measure performance over time.
Arizona Foundation Solutions believes that the proper way to permanently stop the perimeter foundation settlement is to underpin the areas that are experiencing movement. Underpinning is the process of installing deep foundation elements called piles. Piles are engineered foundation supports that are driven down past the unstable soils and are then locked up into load-bearing strata, which can support the loads that are transferred to them. Once the piles have been installed, they can be used to lift the perimeter foundation up to its Highest Practical Maximum. The piles should be spaced approximately eight feet on center and should start and stop near the hinge points of movement (exact spacing to be determined after load-bearing calculations). In this case, the piles would be located at the northern and southeastern portions of the home and at the western portion of the garage. The slab can then be treated by injecting a lightweight expansive polyurethane to fill existing voids and lift the floor slab. This is done by drilling small 3/8” holes in the slab after which polyurethane grout is injected directly under the slab to raise it up to its Highest Practical Maximum. Using the expansive materials will help prevent additional slab settlement by compacting the upper layer of soil as it expands.
Composite interlocking can be performed to tie the broken pieces of the concrete together. The existing crack will be cleaned, and non-parallel lines will be cut across the existing crack. Next carbon fiber laminate stitches will be inserted into the non-parallel cuts and then the gaps will be filled with a two-part poly. Finally, the crack should be ground smooth to minimize the differential. If done properly, this will allow the slab to function as one unit to help prevent damages to flooring, ceiling, and walls. If this is instead expansion joint separation, the joint should be cleaned, routed, and re-caulked with an expansive joint filler. A determination as to which repair is needed will be made on-site once the crack is exposed. The homeowner may want to contact a flooring expert and consider floating the flooring after the repair has been made.
Arizona Foundation Solutions believes that the rusting rebar in the foundation stem wall needs repair. The stem wall must be chipped back to expose the corroded rebar. The rebar should then be cut out and replaced with a composite bar and dowelled to bridge the separation between the bars. The stem wall should then be patched and finished smooth. This will prevent the treated area from future rust and restore the ability of the stem wall to span small voids and support the load. It is recommended to wait at least one week before painting the surface of the stem wall.
The spalling stem wall can be cosmetically repaired. First, the face of the stem wall needs to be chipped back to fractured rock. Then a cementitious patch can be applied and finished smooth. Please wait at least one week before painting the surface.
Since storm runoff is responsible for the majority of the moisture that pools next to the foundation, gutters need to be installed to prevent the storm runoff from increasing the amount of foundation movement. A proper gutter system should be installed to discharge the storm runoff a minimum of 10 feet, preferably 20 feet away from the foundation. We do not recommend installing gutters that discharge next to the foundation as this will only increase the probability of a foundation problem.
It is also beneficial to manage the moisture around your home using conventional means as outlined below:
• Hire a reputable plumbing leak detector and repair service to check both pressure and sewer lines, this is usually done for less than $500. If repairs are needed, they are usually not expensive.
• Make sure the grading of the terrain is sloped downwards at a 5% slope from the home at all areas of the perimeter.
• Stop irrigating plants that are near the foundation and make sure there is nothing trapping the moisture from flowing away from the home.
• When permanently stabilizing, lifting, and/or mitigating a foundation movement problem, AZFS recommends waiting AT LEAST 6 months before investing in cosmetic repairs.
Safety or Structural Concerns: None
Project Summary
Engineer: Aaron M. Atkinson