Foundation Settlement in Payson, Arizona 7.2021
Challenge
The owners of this 1970’s home in beautiful Payson, Arizona reached out to us after a few signs of a foundation problem appeared. Some of these symptoms included:
- Exterior wall cracks
- Exterior cracks in brickwork
- Interior drywall cracks
- Gaps at the baseboards
An initial, Level A, foundation inspection determined a more in-depth foundation inspection was needed to determine the root cause of the foundation movement. This Level B, forensic foundation inspection was conducted.
Foundation Footprint: A drawing of the footprint of the first floor was created and is included in this report.
Exterior Inspection: The exterior of the location was visually inspected. Items such as foundation cracks, exterior wall cracks, improper grading, type of structure, poor drainage, gutters or no gutters, bowed retaining walls, large trees close to the foundation and any type of obstructions that may or may not influence the repair process were noted and recorded.
Interior Inspection: The interior of the location was visually inspected. Items such as floor cracks, wall cracks, ceiling cracks, sloping floors, uneven counter tops, doors and windows that are out of alignment, cracked window glass and bowed walls were noted and recorded.
Manometer Survey: The manometer survey, also known as a floor survey, is a measurement of the differences of interior floor elevations. The flatness of the interior floor was measured using a highly accurate survey device known as a Manometer. The entire interior floor area was surveyed and the elevations were recorded. These data points were then entered into a computer program that provides a topographical map showing the high and low elevation contours of the floor surface. This topographical map shows where the foundation is no longer level and shows where support and stabilization is needed. The floor survey also demonstrates whether any floor slab heave or settlement exists.
After examining the home and performing the manometer survey, Arizona Foundation Solutions believes the home could be experiencing foundation settlement at the northwest portion of the home as shown by the damage (Signs of Stress) and lower readings on the Topographical Map. The drop off in floor elevations on the topographical map is consistent with a foundation settlement pattern. Settlement can be caused by one or any combination of many factors including sub-grade saturation of moisture due to poor drainage, years of storm runoff, plumbing leaks, improper compaction, the lack of a proper foundation system, and/or (in most cases) natural earth movement.
AZFS believes the home could be experiencing minor foundation settlement at the northern portion of the basement as shown by the minor damage.
Solution
Arizona Foundation Solutions believes that the proper way to permanently stop the perimeter foundation settlement is to underpin the areas that are experiencing movement. Underpinning is the process of installing deep foundation elements called piles. Piles are engineered foundation supports that are driven down past the unstable soils and are then locked up into load bearing strata, which can support the loads that are transferred to them. Once the piles have been installed, they can be used to lift the perimeter foundation up to it’s Highest Practical Maximum. The piles should be spaced approximately six feet on center and should start and stop near the hinge points of movement (exact spacing to be determined after load bearing calculations). In this case, the pile(s) would be located at the northwest portion of the home.
The settlement at the northern portion of the basement and at the 2 support columns on the back patio appears to be minor at this point in time. A protection plan has been designed to stop these areas from any additional settlement and further damages. AZFS can permanently stabilize these areas to protect the foundation from future settlement at the homeowners discretion. The basement slab can then be treated by injecting a lightweight expansive polyurethane to fill existing voids and lift the floor slab. This is done by drilling small 3/8” holes in the slab after which polyurethane grout is injected directly under the slab to raise it up to it’s Highest Practical Maximum. Using the expansive materials will help prevent additional slab settlement by compacting the upper layer of soil as it expands.
Since storm runoff is responsible for the majority of the moisture that pools next to the foundation, gutters need to be installed and modified to prevent the storm runoff from increasing the amount of foundation movement. A proper gutter system should be installed to discharge the storm runoff a minimum of 10 feet, preferably 20 feet away from the foundation. We do not recommend installing gutters that discharge next to the foundation as this will only increase the probability of a foundation problem.
Project Summary
Engineer: Néstor J. Brea